2067

O/NMe₂ Exchange in the Reaction of 4-Benzylidene-5-oxazolones with Phosphorous Tris(dimethylamide)

Raj K. Bansal⁺⁾*, Konstantin Karaghiosoff, and Alfred Schmidpeter

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 29. Juni 1988

4-Benzylidene-5-oxazolones 5 do not react with P(OMe)₃; with P(NMe₂)₃ they give rise to 4- α -[bis(dimethylamino)phosphoryl]benzyl-5-dimethylaminooxazoles 6. This behavior differs from that of the corresponding pyrazolones and isoxazolones and is attributed to a decreased stability of the dipolar adduct resulting from a β attack of phosphorus.

The reaction of α,β -unsaturated carbonyl compounds with phosphorous esters and amides such as P(OMe)₃ and P(NMe₂)₃ attracts much interest¹⁾ ever since it was first studied by F. Ramirez and co-workers²⁾. It is normally initiated by the attack of phosphorus at the β position leading to a zwitterionic phosphonium enolate. In the case of P(OMe₂)₃ this primary product is mostly stable, whereas in the case of P(OMe)₃ it tends to escape the charge separation either by ring closure to form a 1,2 λ ⁵-oxaphospholene or by shifting a methyl group. Oxo derivatives of heterocycles containing an alkylidene group in an adjacent position are special cases of α,β -unsaturated carbonyls. In general they behave like the acyclic representatives¹⁾. An example for the addition of P(NMe₂)₃ is provided by its reaction with 5-benzylidenethiazolidine-2,4-dione³; we now find another one in its reaction with the 4-benzylidene-5-pyrazolone 1, leading to the zwitterionic product 2.

The addition of $P(OMe)_3$ followed by the shift of a methyl group is demonstrated by its reaction with the 4-benzylidene-5-isoxazolone 3 thus yielding the 2-methyl-5-isoxazolone 4^{41} .

When we tried to extend the reaction with $P(OMe)_3$ and $P(NMe_2)_3$ to another group of heterocyclic enones, e.g. the 4-benzylidene-5-oxazolones 5, we found them to behave differently. The Z isomers of the unsaturated azlactones 5 are readily accessible and are in general well-investigated ⁵⁾. No reaction with a phosphorus(III) compound seems to be reported, however $^{6)}$.

In contrast to the 4-benzylidene-5-isoxazolone 3, which reacts with $P(OMe)_3$ already at room temperature as described above, the essentially (except for the substituent in 3-/2-position) isomeric 4benzylidene-5-oxazolone 5a does not enter a reaction with $P(OMe)_3$ under the same conditions (see Experimental)⁶.

With $P(NMe_2)_3$ on the other hand, compounds 5a - e give a clean reaction. As monitored by ³¹P NMR, the reaction proceeds smoothly at ambient temperature. Its rate depends slightly on the nature of the benzylidene substituent in *p*-position and decreases in the order Cl, Br, H, Me, OMe. No intermediate can be observed. The products incorporate the two compounds in a 1:1 ratio. They are, however, not just zwitterionic adducts like 2. In addition to the zwitterion formation, the phosphorus has attacked the carbonyl oxygen and transferred a dimethylamino group to the 5-position yielding the 5-aminooxazoles 6a - e.

The structure of compounds 6 follows unequivocally from their NMR spectra (Tables 1 and 2). The phosphorus chemical shift corresponds to that found for methyl- or ethylphosphoryl bis(dimethylamide) [δ (³¹P) = 38] and deviates far from that of a tris(dimethylamino)phosphonium unit such as in 2 (Table 1). The ¹H-NMR spectrum shows the signals of three nonequivalent NMe₂ groups: a singlet for the one in 5-position and two doublets for the diastereotopic ones at phosphorus. Additional proof comes from ¹³C-NMR as well as from IR spectra ($v_{P=0} \approx 1200 \text{ cm}^{-1}$).

Dimethyl sulfate methylates the phosphoryl oxygen of $6d \rightarrow 7d$ instead of the oxazole nitrogen. The methylation is accompanied by the same downfield shift of the ³¹P-NMR signal (ca. 20 ppm) as observed in the methylation of PhP(NMe₂)₂O⁷⁾.

Two pathways may be considered for the formation of 6. The first involves the initial β attack of the P(NMe₂)₃ phosphorus leading to a dipolar adduct analogous to 2. Interaction of the enolate end with the aminophosphonium end could then result in the exchange of substituents to give 6. Dipolar adducts from the oxazolones 5 should be less favored than those deriving from the pyrazolone 1 or from the isoxazolone 3, where the ring nitrogen in 2-

^{*)} Alexander von Humboldt Fellow 1987. – Present address: Department of Chemistry, University of Rajasthan, Jaipur-302004, India.

Table 1. ³¹P{¹H}- and ¹H-NMR spectra of the oxazoles 6a - e and Table 2. ¹³C{¹H}-

7d and of the zwitterionic pyrazole 2 in CDCl₃

δ (Atom) J [Hz]	<u>6</u> ∎	<u>6</u> ₽	<u>6</u> 2	<u>64</u>	<u>6</u> e ≊≘	<u>7</u> ₫	2
P	35.7	34.8	33.1	32.8	34.2	54.8	61.0
4-СН ² J(РСН)	4.76(d) 21.5	4.71(d) 21.0	4.56(d) 21.1	4.72(d) 21.5	4.72(d) 21.5	5.33(d) 22.2	4.82(d) 23.4
5-NMe	2.71	2.73	2.61	2.72	2.73	2.78	
P-NMe ³ J(PNCH)	2.64(d) 9.0	2.64(d) 9.3	2.52(d) 9.4	2.64(d) 9.0	2.65(d) 8.8	2.76(d) 9,2	2.50(d) 9.2
P-NMe ³ J(PNCH)	2.50(d) 9.8	2.51(d) 9.8	2.36(d) 9.1	2.51(d) 9.5	2.52(d) 9.8	2.,75(d) 9.8	
Me		2.42 ^{a)}	3.64 ^{b)}				1.92 ^{c)}

^{a)} 4-Me of R. $-^{b)}$ 4-OMe of R. $-^{c)}$ 5-Me.

position can effectively participate in the delocalization of the negative charge. The fact that 5 does not react with $P(OMe)_3$ may result from the lacking formation of a dipolar adduct.

The alternative pathway starts with the addition of $P(NMe_2)_3$ to the carbonyl group initiated by the nucleophilic attack of N on C-5. A corresponding addition has been reported as an intermediate step in other cases⁸. Subsequent β attack of phosphorus, and a presumably concerted opening of the C-O bond yields **6** without a charge separation being involved. This type of [2,3] sigmatropic rearrangement is well-known for allyl phosphinites⁹. The second pathway thus seems to provide the easier explanation for the product formed; it also accounts for the observed rate dependency.

We wish to thank the Alexander von Humboldt Foundation for supporting this investigation.

Experimental

Melting points were determined on a Lindström apparatus and are uncorrected. – Infrared spectra: Perkin-Elmer 325. – NMR spectra: Varian FT 80 and Jeol FX 90. – 4-Benzylidene-3-methyl-1-phenyl-5-pyrazolone (1) was prepared as described ¹⁰, the 4-benzylidene-2-phenyl-5-oxazolones (5) were prepared according to a procedure for $5a^{11}$. – The reactions with P(NMe₂)₃ were carried out under argon.

3-Methyl-1-phenyl-4- $\langle \alpha$ -[tris(dimethylamino)phosphonio]benzyl>pyrazol-5-olate (2): To a stirred suspension of 1.70 g (6.5 mmol) of 1 in 30 ml of dichloromethane was added 1.05 g (6.5 mmol) of P(NMe₂)₃. A clear solution was formed after 15 min at room temp. ³¹P NMR indicated that the reaction was complete after 48 h. The solvent was then removed and the remaining solid recrystallized from acetonitrile yielding 1.65 g (61%) of 2 cream-colored crystals, m.p. 121-123 °C. The solid substance turns red at room temp. Table 2. ${}^{13}C{}^{1}H{}^{-a}$ and ${}^{13}C$ -NMR spectra of the oxazoles 6a-e and of the zwitterionic pyrazole 2 in CDCl₃

ő (Atom) J [Hz]	É₫	<u>6</u>	<u>6</u> ₫	<u>6</u> €	2
C-2	154.4(dt)	153.4	154.6(t)	154.8	146.4(d) ^b
³ J(CCCN)	4.8		4.4	0.7	7.0
C-4	122.9(dd)	122.3(d)	122.4(dd)	122.4(d)	86.9(d)
² J(PCC) ² J(CCH)	7.3 7.0	7.0	7.3 7.0	7.3	4.8
C-5	152.9(do)	152.1(d)	153.0(do)	153.2(d)	164.2(d)
³ J(CCCH)	4.0	10.6	3.7	10.5	4.0
2-0.	127 7(r)	128 1	131 0 ^{C)}	127 7	141 ad)
J(CCCH)	6.6		19119	127.7	,41.0
2-C ₀	125.1(ddd)	126.8	125.1(ddd)	125.3	118.2 ^{d)}
³ J(CCCH)	7.7		6.0		
³ J(CCCH)	6.2		5.0		d)
2-Cm J(CH)	128.0(ddd) 161.9	127.2	128.1(dtd) 163.8	128.3	127.947
² J(CCH) ³ J(CCCH)	1.5		2.2 5.9		
2-C.	128.9(dt)	128.0	129.1(dt)	129.2	121.2 ^{d)}
іј(Сн) Јј(сссн)	160.8 7.0		161.2		
4-CH	42.4(ddt)	40.3(d)	41.8(ddt)	42.1(d)	40.5(d)
J(PC) J(CH)	109.5	110.7	110.0	109.5	101.1
³ ј(СССН)	4.0		3.5		
R-Ci	136.8(ddt)	127.8(d)	135.5(ddt)	136.2(d)	136.7(d)
² J(CCH)	7.0	5.1	7.3	4.0	2.2
-J(CCUH)	7.5		1.1		
R-C. ³ J(PCCC)	129.2(ddqd) 5.1	129.3(d) 5.5	130.6(dddd) 5.1	131.1(d) 5.5	129.0(d) 5.5
¹ J(CH) ³ 7(CCCH)	159.0		162.3		
³ J(CCCH)	5.5		5.5		
R-C _m	127.5(dddd)	112.1	127.6(ddd)	130.7(d)	128.1(d)
J(CH)	159.0		164.9	1.8	2.2
² J(CCH) ³ J(CCCH)	1.5 7.0		1.8 5.9		
R-Cp	126.0(dd t)	157.0(d)	132.0 ^{c)}	120.3(d)	126.6(d)
^b J(PCCCCC) ¹ J(CH)	2.6	2.2		3.3	2.9
J(CCCH)	7.3				
ie		53.6 ^{e)}			14.0 ^{f)}
-NMe	42.5(dqq)	41.4(d)	42.5(dqq)	42.7(d)	
J(CH)	:36.3	1.1	136,3	1.1	
U(CNCH)	4.4	A	4.4		
J(PNC)	36.6(dqq) 3.7	نة.6(d) 3.3	36./(dqq) 3.7	36.9(d) 3.7	37.9(d) 2.6
J(CH) J(CNCH)	136.7 4.0		137.0 4.0		
-NMe	36.0(dqq)	35.0(d)	36.0(dqq)	36.1(d)	
J(PNC) J(CH)	2.6	2.6	2.2	2.6	
J(CNCH)	4 4		4.4		

^{a)} **6b**: 43.0 [d, ⁵*J*(PCCCNC) = 1.5, 5-NMe], 37.1 [d, ²*J*(PNC) = 3.7, P-NMe], 36.6 [d, ²*J*(PNC) = 2.9, P-NMe]. - ^{b)} C-3, ³*J*(PCCC). - ^{c)} Coupling not resolved due to overlapping. - ^{d)} 1-Ph. - ^{c)} 4-OMe of R. - ^{b)} 5-Me.

within a few days; ¹H NMR indicates that is decomposes to a complex mixture.

2-Aryl-4- $\langle \alpha$ -[bis(dimethylamino)phosphoryl]benzyl>-5-dimethylaminooxazoles 6: To a stirred suspension of 9.0 mmol of 5a - e in 40 ml of dichloromethane was added 1.46 g (9.0 mmol) of P(NMe₂)₃. A clear dark solution resulted after ca. 15 min. As monitored by the ³¹P-NMR signal of P(NMe₂)₃ the reaction was complete after less than 12 h in the case of 6d, e, after 24 h in the case of 6a, and almost complete after 96 h in the case of 6c. After removing the solvent under reduced pressure the solid residue was recrystallized from acetonitrile. -6b, e were not obtained in pure form.

6a: Crude yield 3.12 g (78%), colorless crystals, m.p. 139-141 °C. – IR (KBr): v = 1205 cm⁻¹.

 $\begin{array}{rl} C_{22}H_{29}N_4O_2P \ (412.5) & Calcd. \ C \ 64.06 \ H \ 7.09 \ N \ 13.58 \\ Found \ C \ 63.75 \ H \ 7.19 \ N \ 14.02 \end{array}$

6d: Crude yield 3.75 g (93%), colorless crystals, m.p. 136 - 138 °C. – IR (KBr): $\nu = 1190$ cm⁻¹.

 $\begin{array}{c} C_{22}H_{28}ClN_4O_2P \ (446.9) \\ Found \ C \ 59.13 \ H \ 6.31 \ N \ 12.54 \\ Found \ C \ 58.95 \ H \ 6.45 \ N \ 12.61 \end{array}$

6e: Crude yield 3.98 g (90%), pale yellow crystals, m.p. 128 to 130° C.

 $\begin{array}{rl} C_{22}H_{28}BrN_4O_2P \ (491.4) & Calcd. \ C \ 53.78 \ H \ 5.74 \ N \ 11.40 \\ Found \ C \ 53.59 \ H \ 5.93 \ N \ 11.25 \end{array}$

When 5a in dichloromethane was stirred with the equivalent amount of P(OMe)₃ for 48 h at room temp., no change was observed in the ³¹P NMR and 5a was recovered unchanged.

Methylation of 6d: To a solution of 6d in CDCl₃ an excess of Me₂SO₄ was added. The NMR spectra, recorded after 30 min, showed 7d to be the only product.

CAS Registry Numbers

1: 23901-60-2 / 2: 116149-61-2 / 5a: 842-74-0 / 5b: 82309-33-9 / 5c: 5429-22-1 / 5d: 15601-44-2 / 5e: 20345-16-8 / 6a: 116149-62-3 /

6b: 116149-63-4 / **6c**: 116149-64-5 / **6d**: 116149-65-6 / **6e**: 116149-66-7 / 7**d**: 116149-68-9 / 7**d** [P(V)]: 116149-69-0 / P(NMe₂)₃: 1608-26-0 / P(OMe)₃: 121-45-9

- ¹⁾ I. V. Konovalova, A. N. Pudovik, Russ. Chem. Rev. (Engl. Transl.) 41 (1972) 411.
- ²⁾ F. Ramirez, Pure Appl. Chem. 9 (1064) 337.
- ³⁾ B. A. Arbusov, E. N. Dianova, A. V. Fuzhenkova, A. F. Lisin, Izv. Akad. Nauk SSSR, Ser. Khim. 1975, 1825; Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1975, 1706.
- ⁴⁾ B. A. Arbusov, E. N. Dianova, V. S. Vinogradova, Yu. Yu. Samitov, Dokl. Akad. Nauk SSSR 173 (1967) 1321.
- ⁵⁾ Y. S. Rao, R. Filler in *The Chemistry of Heterocyclic Compounds* (A. Weissberger, E. C. Taylor, Eds.), vol. 45, Oxazoles (I. J. Turchi, Ed.), p. 361, Interscience, New York 1986.
- ⁶⁾ A recent paper reports attempts to treat **5a** with P(OMe)₃. In accord with our results no reaction is found in benzene or toluene or even under drastic conditions without solvent. A reaction takes place, however, in methanol coupled with the addition of water to give a ring-opened product: R. Shabana, M. M. Sidky, A. A. El-Kateb, F. M. Soliman, *Phosphorus Sulfur* **34** (1987) 57.
- ¹⁾ A. Schmidpeter, H. Brecht, Z. Naturforsch., Teil B, 24, (1969) 179.
- ⁸⁾ R. F. Hudson, R. J. G. Searle, F. H. Devitt, J. Chem. Soc. B, **1966**, 789.
- ⁹⁾ A. W. Herriott, K. Mislow, Tetrahedron Lett. 1968, 3013.
- ¹⁰ G. Desimoni, A. Gamba, P. P. Righetti, G. Tacconi, *Gazz. Chim. Ital.* **102** (1972) 491.
- ¹¹⁾ H. B. Gillespie, E. R. Snyder in *Org. Synth.* (A. H. Blatt, Ed.), Coll. Vol. 2, p. 489, John Wiley, London 1943.

[173/88]

Chem. Ber. 121, 2067 – 2069 (1988)